Course Syllabus
RC 243 Neonatal and Pediatric Respiratory Care

<table>
<thead>
<tr>
<th>Class Hours: 3</th>
<th>Laboratory Hours: 0</th>
<th>Credit Hours: 3</th>
</tr>
</thead>
</table>

Instructor
Mickey Rountree
Office ext 4770
Office 2085
Email mickey.rountree@chattanoogastate.edu

Course Description:
A course designed to introduce the student to common pediatric and neonatal cardiopulmonary disorders. The student will be introduced to therapeutic modalities used in the treatment of infants and children, including CPAP, mechanical ventilation, high frequency ventilation, nitric oxide therapy and ECMO.

Entry Level Standards:
Current standing in the respiratory care program

Prerequisites:
Permission of instructor

Co Requisites:
RC 210

Textbooks:
Respiratory Care of the Newborn, by Aloa. 2nd ed.

Class Web Site:
RC 243 ELearn

Library Usage:
All students are required to have internet access to check Elearn for course updates and materials. Internet access is available in the RC Lab and the HSC Resource room.

Presentation
1. Lecture
2. Audiovisual aids, including transparencies and power point
3. Demonstration and student use of equipment
4. Handouts
5. Student discussion in classroom

Specific Evaluation Process
Missed Class Tests - student is responsible for taking all tests as scheduled. Any missed test must be made up as soon as possible, and the make-up test may differ from the original. Acceptable excuses for missing test are jury duty, court subpoena, and illness with a doctor’s excuse. Personal and family emergencies will be reviewed on a case by case basis.

Testing sources Test material will come from text reading, hand outs and class lectures and activities. The student is responsible for material covered in
text but not presented in class.

Academic dishonesty
See program policy handbook

<table>
<thead>
<tr>
<th>Misc</th>
<th>The use calculators during class or testing will be at the instructor=s discretion. Under no conditions will preprogramed calculators be allowed. The TI calculators are ok if not preprogramed before test. The instructor may provide basic calculators for test taking. The use of tape recorders and other recording devises will be at the instructors discretion. No beepers or cellular phone calls during class</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Grade Calculation</th>
<th>Four tests plus a comprehensive final. Each test is 20 of the final grade</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Testing, Grading And Retesting</th>
<th>Five tests including the final which is comprehensive. Each test is 20% of final average. Each test must be passed with a minimum grade of 75. Any test below a 75 must be retaken within seven days to achieve a 75 or better. Either the original grade or 70%, whichever is higher will be used to calculate the class average. Only one retest will be given for an exam. Only two tests may be retaken during the semester. A 75 on every test (or retake) is required to pass the course, regardless of overall average. A grade less than 70 on the final exam will result in a grade of D or F; there will be no retest on the final. Students making a score less than 75% on a retest or making less than 75% on a third examination will not be eligible to continue in this class or associated laboratory. Makeup exams will be given without penalty only for excused absence (doctor=s excuse for illness, subpoena, jury duty, court orders). Unexcused makeup test grades will be reduced 5 points per day that the testing center is available until made up. See testing center schedule and note that Saturday is an available day. See your Respiratory Care Handbook for further details regarding retention and testing policies.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Class Attendance</th>
<th>Punctual attendance at all scheduled classes is expected. Final grade will be reduced 1% for each unexcused absence (acceptable excuses are doctor=s excuse for illness, subpoena, jury duty, court orders) after the second absence. Final grade will be reduced 2% for each tardiness (>5 min) after the second tardiness.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Office Hours</th>
<th>Monday and Friday 10:00-11:00 12:00-3:00</th>
</tr>
</thead>
</table>

| Disabilities Statement | Students who have educational, psychological, and/or physical disabilities may be eligible for accommodations that provide equal access to educational |
programs and activities at Chattanooga State. These students should notify the instructor immediately, and should contact Disabilities Support Services within the first two weeks of the semester in order to discuss individual needs. The student must provide documentation of the disability so that reasonable accommodations can be requested in a timely manner. All students are expected to fulfill essential course requirements in order to receive a passing grade in a class, with or without reasonable accommodations.

Disruptive Students: The term "classroom disruption" means - student behavior that a reasonable person would view as substantially or repeatedly interfering with the activities of a class. A student who persists in disrupting a class will be directed by the faculty member to leave the classroom for the remainder of the class period. The student will be told the reason(s) for such action and given an opportunity to discuss the matter with the faculty member as soon as practical. The faculty member will promptly consult with the division dean and the college judicial officer. If a disruption is serious, and other reasonable measures have failed, the class may be adjourned, and the campus police summoned. Unauthorized use of any electronic device constitutes a disturbance. Also, if a student is concerned about the conduct of another student, he or she should please see the teacher, department head, or division dean.

Affirmative Action: Students who feel that he or she has not received equal access to educational programming should contact the college affirmative action officer.

Changes. This syllabus can be changed at the discretion of the instructor with written or oral notice.

Respiratory Care Program Student Learning Outcomes (PSLO)

PSLO 1) Graduates of the Respiratory Care program will show the ability to interpret, comprehend, apply and evaluate patient data and clinical information relative to their role as an Advanced-Level Respiratory Therapist. CSLO 1-19

PSLO 2) Graduates of the Respiratory Care program will demonstrate the proficiency in all the mechanical and physical skills necessary to fulfill their role as an Advanced-Level Respiratory Therapist.

PSLO 3) Graduates of the Respiratory Care program will demonstrate behaviors and attitudes consistent with professional and employer expectations for an Advanced-Level Respiratory Therapist.

PSLO 4) Graduates of the Respiratory Care program will provide the community with qualified...
individuals who can meet current and future needs of the workplace as respiratory therapists.

CSLO 1-19

Course Student Learning Outcomes

CSLO 1. Understand gestational development and transitions at birth.
CSLO 2. Understand the components and importance of a prenatal and perinatal history.
CSLO 3. Be able to perform a respiratory physical exam and APGAR score
CSLO 4. Recognize special problems of infants and how they affect the respiratory system.
CSLO 5. Know basic laboratory values for newborns.
CSLO 6. Be able to interpret chest x-rays.
CSLO 7. Understand pathogenesis, pathophysiology and treatment of common respiratory diseases of infants and children.
CSLO 8. Understand the pathophysiology of common congenital heart diseases.
CSLO 9. Understand the pathophysiology of common congenital defects.
CSLO 10. Know the indications and techniques of oxygen therapy.
CSLO 11. Know the indications and techniques of CPAP administration.
CSLO 12. Know the indications and techniques of mechanical ventilation in infants.
CSLO 13. Know the guidelines for infant resuscitation according to current Neonatal Resuscitation Program standards.
CSLO 14. Know indications and technique for infant intubation and extubation.
CSLO 15. Know indications and technique for infant chest physical therapy.
CSLO 16. Know indications and basic technique of ECMO.
CSLO 17. Know the indications and techniques of high frequency mechanical ventilation in infants.
CSLO 18. Know the pharmacology and administration of surfactants in infants.
CSLO 19. Complete the American Academy of Pediatrics Neonatal Resuscitation Program (NRP)

Instructional Indicators:

For CSLO 1:
The RC student will:

1) Know the four phases of lung development in the fetus and the major landmarks in each ie glandular (0-16 wk, airways down to bronchioles), canalicular (16-24 wk, alveolar sacs formed), alveolar (24-birth, alveoli mature, A/C area increases, surfactant production), post-natal (alveoli increase in size and number).

2) Know how many alveoli are present at birth and in adults.

3) Know when, and where surfactant is produced, its role and major active component.
4) Know what the L/S ratio and shake test are used for and the significance of results.
5) Be able to diagram and explain the fetal circulation, including the placenta and all fetal shunts, direction of flow, points with highest and lowest PO2, and % flow to lungs.
6) Be able to explain why Pulmonary vascular resistance is high in utero.
7) Explain what causes initiation of breathing.
8) Know the structural and functional differences between adult and fetal hemoglobin.
9) Know what intrapleural pressures are required for the first breaths and why it is so high.
10) Know how fluid is removed from the alveoli and lungs after birth.
11) Know the factor causing a decrease in pulmonary vascular resistance and an increase in systemic vascular resistance after birth.
12) Know the factors causing closure of each of the fetal shunts and what they are called after closure.

For CSLO 2:
The RC student will:
1) Know the maternal risk factors (definitions, significance, possible infant problems, abbreviations)
 multiparity
 age
 toxemia
 UPI
 Diabetes (mild vs severe)
 alcohol, drug and tobacco use
 infections (TORCH, syphilis, AIDS)
 anatomic abnormalities
2) Know other risk factors (definitions, significance, possible infant problems, abbreviations)
 multiple gestation
 placental problems (placenta previa and abruptio placenta)
 PROM
 post maturity
3) Know definitions for premature, term and post term delivery.
4) Know problems associated with:
 prematurity
 IUGR
 asphyxia
5) Know definitions and significance of fetal assessment techniques (ultrasound, amniocentesis, urinary estriols, and fetal heart rate patterns associated with both non stress and stress testing.)
6) Know the three stages of labor.
7) Know definitions and problems associated with:
 dystocia
cord prolapse
abnormal presentation (breech, shoulder etc)

8) Know the significance of early, late and variable decelerations in fetal heart rate monitoring.
9) Know the technique and significance of fetal scalp pH monitoring.

For CSLO 3:
The RC student will:
1) Know the components of the APGAR score, and be able to score an infant.
2) Know the significance of high and low APGAR scores.
3) Know that gestational age is assessed by the Dubowitz score which includes physical and neurologic evaluation. (Don't learn the whole score or be able to score)
4) Know normal respiratory rate and pattern for infants.
5) Know normal heart rate for infants, and the significance of tachycardia and bradycardia.
6) Know what the apical impulse or PMI is and where it is normally located.
7) Know definition and significance of tachypnea, nasal flaring, retractions and grunting.

For CSLO 4:
The RC student will:
1) Know the definitions of apnea in infants.
2) Know the types of abnormal breath sounds in infants and possible significance.
3) Know the three components of a thermoregulatory system.
4) Know the shivering and non-shivering methods of thermogenesis in infants.
5) Know the four mechanisms of heat loss.
6) Know the effects of cold stress and heat stress in infants.
7) Know what NTE is, how it maintained and how it applies to respiratory care procedures.
8) Know the steps in the production, conjugation, transport and excretion of bilirubin.
9) Know the definition and causes of jaundice.
10) Know the definition and consequences of hyperbilirubinemia, kernicterus, and how hyperbilirubinemia is treated.
11) Know the definition and causes of insensible water loss.
12) Know the consequences of the infants immature immune system.
13) Know the different immunoglobins and which are present in the newborn period, infancy, and childhood.
14) Know the definition and causes of apnea in infants.
15) Know the signs and causes of seizures in infants.
16) Know the different types of intracranial hemorrhages and their causes and which ones are more common in premature infant.

For CSLO 5:
The RC student will:
1) Know the proper position for an umbilical artery catheter, sampling techniques and

RC 243 Syllabus
2) Know the sampling technique by arterial puncture.
3) Know the sampling technique and evaluation of capillary blood gases.
4) Know normal ABG values for newborns.
5) Know normal hemoglobin and hematocrit values for newborns and significance of abnormal values.
6) Know normal values for thrombocytes in infants and significance of abnormal values.
7) Know normal values and significance of abnormal values for leukocytes and how leukocyte distribution changes with age.
8) Know how apnea monitors work and at what alarm values should be set.
9) Know how transcutaneous oxygen and CO2 electrodes work.
10) Know how transcutaneous electrodes are attached, preferred sites and hazards and contraindications.
11) Know the difference between matching and correlating and how actual arterial and measured transcutaneous values vary for O2 and CO2 electrodes.
12) Know how perfusion affects transcutaneous monitors.
13) Know the temperatures used for transcutaneous monitors, and how they are calibrated.
14) Know how oximeters work and factors that may limit or decrease their accuracy.

For CSLO 6:
The RC student will:
1) Know the common radiographic findings associated with HMD, PIE, pneumothorax, pneumomediastinum, pneumopericardium, air bronchograms.
2) Know the difference between A-P, P-A, lateral decubitus, and cross table lateral.
3) Know the proper position on x-ray for ETT's, UAC's and UVC's.

For CSLO 7:
The RC student will:
1) Know the etiology, pathophysiology, clinical findings, radiology, laboratory findings, and treatment of:
 Hyaline membrane disease (HMD)
 Bronchopulmonary dysplasia (BPD)
 Meconium aspiration syndrome (MAS)
 Barotrauma
 Pneumonia
 Apnea
 Transient tachypnea of the newborn (TTNB)
 Wilson-Mikity syndrome
2) Know the causative agents, age groups, and onset for croup, epiglottitis, and RSV.
3) Know the clinical findings (breath sounds, voice, cough, temp, drooling etc) for croup, epiglottitis, and RSV.
4) Know the lab tests (WBC, C&S, immunoflorescent stain etc. for croup, epiglottitis, and RSV.

RC 243 Syllabus
5) Know the treatment, complications and prognosis for croup, epiglottitis, and RSV. (In particular remember the hazards of touching the epiglottis in epiglottitis and the need to intubate before obstruction occurs.

For CSLO 8:
The RC student will:

1) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of persistent pulmonary hypertension of the newborn (PPHN). Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

2) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of patent ductus arteriosus (PDA). Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

3) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of ventricular septal defect (VSD). Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

4) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of atrial septal defect (ASD). Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

5) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of tetralogy of Fallot (TOF). Know the four components. Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

6) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of transposition of the great vessels (TGA, TGV). Know that shunting is essential to survival and where it occurs. Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

7) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of total anomalous pulmonary venous return (TAPVR). Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

8) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of coarctation of the aorta. Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

9) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of hypoplastic left heart syndrome. Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

10) Know the etiology, pathophysiology, clinical manifestations, differential diagnosis, and treatment of pulmonary atresia. Be able to classify it as R→L, L→R or obstructive and draw a box diagram showing direction of blood flow.

RC 243 Syllabus
For CSLO 9:
The RC student will:
1) Know the definition, diagnosis, pathophysiology and treatment of choanal atresia.
2) Know the definition, diagnosis, pathophysiology and treatment of Pierre-Robin syndrome and what other defects are associated with it.
3) Know the definition, diagnosis, pathophysiology and treatment of diaphragmatic hernia. Know other associated problems such as dextrocardia and hypoplastic lungs.
4) Know the definition, diagnosis, pathophysiology and treatment of T-E fistulas. Know the problems caused by air in the stomach and aspiration. Know the most common type of T-E fistula.

For CSLO 10:
The RC student will:
1) Know the four types of hypoxia and examples of each.
2) Know the desired range of P_aO_2 for oxygen therapy in infants.
3) Know how to determine if a patient will be cyanotic or not.
4) Know the stress factors that also cause hypoxia in infants.
5) Know signs and symptoms of hypoxia in infants.
6) Know how the humidification system in an isolette works and why it is rarely used.
7) Know minimal flows for oxyhoods, and precautions for temperature and humidity.
8) Know how cannulas are used for infants.
9) Know the hazards of oxygen therapy in infants, ie. BPD and ROP.

For CSLO 11:
The RC student will:
1) Know the other terms for CPAP, ie. CDP, CNP, EPAP.
2) Know the beneficial effects and risks of CPAP on the pulmonary, cardiovascular, and renal systems. (Chart page 221)
3) Know the components of a CPAP system, ie. blender, flowmeter, reservoir (optional), patient interface, PEEP source.
4) Know the advantages and disadvantages of different patient CPAP interfaces. (chart page 223)
5) Know what CNP is and how it is administered.
6) Know how CPAP is applied and monitored clinically.

For CSLO 12:
The RC student will:
1) Know the indications for mechanical ventilation in infants.
2) Know the hazards of mechanical ventilation in infants.
3) Know the definitions of and be able to calculate compliance, resistance, and time constants (in particular 95% vol change in 3 time constants).
4) Know how changes in resistance and compliance affect time constants, how common neonatal pulmonary diseases affect time constants and what ventilatory
patterns are best for differing time constants.

5) Know what inadvertent PEEP is and how to minimize it.
6) Know the difference between volume cycled, pressure cycled, time cycled and time cycled, pressure limited ventilators.
7) Know the 6 controls common to all time cycled, pressure limited infant ventilators.
8) Know how changes in ventilator controls affect mean airway pressure, oxygenation, and ventilation.
9) Know typical values for the 6 controls common to all time cycled, pressure limited infant ventilators.
10) Know the modes of ventilation used for infant ventilation.
11) Be able to calculate rate, cycle time, I:E ratio, Tt or TE given any two variables.

For CSLO 13:
The RC student will:
1) Know what percent of infants actually require resuscitation.
2) Know the procedures normally performed on a healthy infant during a normal delivery (suctioning, drying, cord clamping, APGAR, etc.).
3) Know what levels of resuscitation are associated with various APGAR scores.
4) Know the steps in maintaining temperature in the delivery room.
5) Know the steps in airway and ventilation management in the delivery room (positioning, bag/mask vent, intubation, reversal of narcotics).
6) Know when and how to perform CPR. (Review steps, hand position, rate, ratio, depth of compressions from CPR manual)
7) Know the indications and dosage for HCO3 administration in infants.
8) Know the glucose levels associated with hypoglycemia in premature and term infants and how it is treated.
9) Know how hypovolemia is treated.
10) Know how bradycardia and severe hypotension are treated, and how epinephrine can be administered.

For CSLO 14:
The RC student will:
1) Know the aerosol drugs for bronchodilation, vasoconstriction and mucolysis in infants.
2) Know the hazards of suctioning in infants, including trauma, apnea and bradycardia (and why), infection, and hypoxemia.
3) Know the pressures, insertion depth and technique for suctioning infants.
4) Know what to monitor while suctioning.
5) Know which size catheters are appropriate for infant ET tubes. Know how to convert from french to mm.
6) Know which blade is used to intubate infants and how it is positioned.
7) Know how the skin is prepped and how ET tubes are secured.
8) Know what a Cole tube is, what Magill forceps are, and which size ET tube is used for various sized infants.
9) Know what signs to monitor during and after intubation.

RC 243 Syllabus
10) Know how to identify proper tube position on CXR.
11) Know the complications of intubation.
12) Know how to extubate.

For CSLO 15:
The RC student will:
1) Know the indications and contraindications for CPT in infants.
2) Know the drainage positions for all 18 segments. Be able to recognize the segment drained from drawings of positions.

For CSLO 16:
The RC student will:
1) Know the definition and indications and contraindications for ECMO.
2) Know the components of an ECMO circuit, and how O2 and CO2 diffusion across the membrane is limited.
3) Know the two common systems of cannulation and the advantages of each.
4) Know ventilator settings used with ECMO.
5) Know the role of heparin in ECMO and its hazards and monitoring.
6) Know how infants are weaned from ECMO.

For CSLO 17:
The RC student will:
1) Know the types of high frequency jet ventilation
2) Know the theories of ventilation and gas movement in HFJV.
3) Know the indications for HFJV and the complications.
4) Know the controls of the unnel HFJV and how it is used along with a conventional ventilator.
5) Know the parts of a HFJV ET-tube and how it is placed.
6) Know typical rates and % on-time for HFJV.
7) Know how ventilation and oxygenation are controlled with HFJV.
8) Know the two techniques used to suction with HFJV.
9) Know the techniques used to wean from HFJV.
10) Know the controls and calibration of the sensormedic HFOV.
11) Know typical setting for HFOV.
12) Know how ventilation and oxygenation are controlled with HFOV.

For CSLO 18:
The RC student will:
1) Know the composition, production and role of surfactant in the lungs.
2) Know the pathophysiology associated with surfactant deficiencies.
3) Be able to interpret L/S ratios.
4) Know the available surfactants and the advantages of each.
5) Know how surfactant is administered, the dosage, and how to monitor and adjust ventilator settings.
6) Know the complications and beneficial effects of surfactant therapy.
For CSLO 19:
The RC student will:
 1) Satisfactorily complete the written test of the NRP.
 2) Satisfactorily complete the practical testing of the NRP.

Required Assessments:

<table>
<thead>
<tr>
<th>Test</th>
<th>CSLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>CSLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Test 2</td>
<td>CSLO 6, 7</td>
</tr>
<tr>
<td>Test 3</td>
<td>CSLO 7, 8, 9</td>
</tr>
<tr>
<td>Test 4</td>
<td>CSLO 10, 11, 12</td>
</tr>
<tr>
<td>Test 5 (Comprehensive Final)</td>
<td>CSLO 13, 14, 15, 16, 17, 18</td>
</tr>
<tr>
<td>NRP Testing</td>
<td>CSLO 13, 14, 19</td>
</tr>
</tbody>
</table>

WEEK/UNIT/TOPIC

<table>
<thead>
<tr>
<th>WEEK/UNIT/TOIC</th>
<th>CSLO 1</th>
<th>CSLO 2</th>
<th>CSLO 3</th>
<th>CSLO 4</th>
<th>CSLO 5</th>
<th>CSLO 6</th>
<th>CSLO 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSLO Assessment</td>
<td>Test 1</td>
<td>Test 1</td>
<td>Test 1</td>
<td>Test 1</td>
<td>Test 1</td>
<td>Test 2</td>
<td>Test 2, 3</td>
</tr>
<tr>
<td>CSLO Assessment</td>
<td>CSLO 8</td>
<td>CSLO 9</td>
<td>CSLO 10</td>
<td>CSLO 11</td>
<td>CSLO 12</td>
<td>CSLO 13</td>
<td>CSLO 14</td>
</tr>
<tr>
<td>CSLO Assessment</td>
<td>Test 3</td>
<td>Test 3</td>
<td>Test 4</td>
<td>Test 4</td>
<td>Test 4</td>
<td>Test 5</td>
<td>Test 5</td>
</tr>
<tr>
<td>CSLO Assessment</td>
<td>CSLO 15</td>
<td>CSLO 16</td>
<td>CSLO 17</td>
<td>CSLO 18</td>
<td>CSLO 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Test 5</td>
<td>Test 5</td>
<td>Test 5</td>
<td>Test 5</td>
<td>Test 5</td>
<td>NRP</td>
<td>NRP</td>
</tr>
</tbody>
</table>

1 | Gestational development
 Fetal - neonatal transition |
2 | prenatal, perinatal history
 TEST 1 |
3 | Physical exam
 Special problems of the newborn |
4 | Special problems of the newborn
 Laboratory and radiologic examination |
5 | non invasive monitoring
 Test 2 |
6 | Pulmonary Disorders in the newborn |

RC 243 Syllabus
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>RSV Bronchiolitis, Croup, Epiglottitis Cardiovascular disorders</td>
</tr>
<tr>
<td>8</td>
<td>Cardiovascular disorders</td>
</tr>
<tr>
<td></td>
<td>TEST 3</td>
</tr>
<tr>
<td>9</td>
<td>Congenital anomalies</td>
</tr>
<tr>
<td></td>
<td>oxygen therapy</td>
</tr>
<tr>
<td></td>
<td>Continuous distending pressure</td>
</tr>
<tr>
<td>10</td>
<td>Mechanical ventilation</td>
</tr>
<tr>
<td>11</td>
<td>Mechanical ventilation</td>
</tr>
<tr>
<td></td>
<td>Test 4</td>
</tr>
<tr>
<td>12</td>
<td>Airway care and bronchial hygiene</td>
</tr>
<tr>
<td></td>
<td>Resuscitation</td>
</tr>
<tr>
<td>13</td>
<td>Resuscitation</td>
</tr>
<tr>
<td></td>
<td>AAP NRP Course</td>
</tr>
<tr>
<td>14</td>
<td>surfactant therapy</td>
</tr>
<tr>
<td></td>
<td>ECMO</td>
</tr>
<tr>
<td>15</td>
<td>high frequency ventilation</td>
</tr>
<tr>
<td></td>
<td>Final Exam</td>
</tr>
</tbody>
</table>
Student Acceptance Of Policies

I have read all of the policies contained in the syllabus for Respiratory Care (RC 111) and understand them and agree to abide by them.
Student Signature ________________________________
Date ____________________________
(tear this page out and return this page to the instructor)